Beyond Blur: A Fluid Perspective on Generative Diffusion Models
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Figure 1. The standard diffusion model (DDPM, left) induces Gaussian nose for image corruption, inverse heat dissipation blurs the image
using the heat equation (middle), and our proposed advection-diffusion method adds both blur and translation of pixels (right).

Abstract

We propose a novel, Partial Differential Equation (PDE)
driven, corruption process for generative image synthesis
which generalizes existing PDE-based approaches. Our
forward pass formulates image corruption via a physically
motivated PDE that couples directional advection with
isotropic diffusion and Gaussian noise, controlled by dimen-
sionless numbers. We solve this PDE numerically through a
GPU-accelerated Lattice Boltzmann solver for fast evalua-
tion. To induce realistic “turbulence,” we generate stochas-
tic velocity fields that introduce coherent motion and cap-
ture multi-scale mixing. In the generative process, a neu-
ral network learns to reverse the advection-diffusion opera-
tor thus constituting a novel generative model. We discuss
how previous methods emerge as specific cases of our op-
erator, demonstrating that our framework generalizes prior
PDE-based corruption techniques. We illustrate how ad-
vection improves the diversity and quality of the generated
images while keeping the overall color palette unaffected.
This work bridges fluid dynamics, dimensionless PDE the-
ory, and deep generative modeling, offering a fresh perspec-
tive on physically based inverse problems.

1. Introduction

Denoising probabilistic diffusion-based generative models
have made striking strides in recent years, demonstrating
high-quality image synthesis through iterative noise addi-
tion and subsequent denoising [7, 11, 33, 36].

A distinct branch of works focuses on introducing differ-
ent image corruption processes, such as Cold Diffusion [2],
Soft Diffusion [6], or more physically inspired processes,
such as Inverse Heat Dissipation [27] or Blurring Diffu-
sion [12]. The idea in these works is to replace or aug-
ment the pure Gaussian noise with other mechanisms aimed
at better preserving color budgets, multi-scale detail, or
interpretability. A notable subfamily are the PDE-based
methods, which model the image frequencies explicitly and
thus deliver a multi-scale perspective with clear frequency-
domain interpretation. Nevertheless, previous PDE ap-
proaches remain purely isotropic, ignoring potentially com-
pelling directional flows.

We introduce the advection—diffusion corruption
processes, which allows to unlock anisotropic patterns
of texture shifts and swirling motions in the forward
corruption process. This forward operator is physically
well-grounded and not covered by earlier works.



Our main contribution is hence an Advection-
Diffusion-Reaction Probabilistic Model which goes beyond
blur. Tt integrates not only a random reaction terms (Gaus-
sian noise) and blurring (averaging) but also shift (advec-
tion) terms, generalizing the previous works into a common
framework. It is inspired by fluid dynamics and it allows
to unlock structured flows. The major advantage over previ-
ous methods lies in its physical grounding and its property
to enable coherent texture shifts in the forward corruption
trajectory that isotropic blur cannot represent.

To implement the aforementioned advection-diffusion
operator on typical datasets efficiently, we propose a scal-
able GPU-based Lattice Boltzmann Method (LBM) solver,
an established fluid simulation technique [19]. We also in-
troduce a dimensionless formulation of the training process
(using similarity numbers) and show that the intensity of the
physical process can be easily transferred between images
of different resolutions.

2. Related Work

The last few years have witnessed tremendous progress in
diffusion-based generative methods for image generation
and beyond. Several comprehensive surveys [4, 39] con-
solidate the growing literature. Building on early variants of
Denoising Diffusion Probabilistic Models (DDPM) [11, 33],
the diffusion processes have been generalized to continuous-
time stochastic differential equations [36], revealing unify-
ing insights across iterative noising—denoising paradigms.
Notably, the notion of learning gradients of the data distribu-
tion can be traced back to Song and Ermon [35], which laid
the foundation for modern score-based generative model-
ing. Subsequent refinements have focused on improved sam-
pling [14, 25, 31, 34], better architectures [15], improved
training dynamics [16], and conditional guidance [10], of-
ten yielding state-of-the-art image quality [7]. These ad-
vances have extended beyond unconditional image synthe-
sis to tasks such as super-resolution [30] and time-series
imputation [37], showcasing the versatility of diffusion ap-
proaches. A variational perspective on diffusion comple-
ments score-based methods [17], and Latent Diffusion Mod-
els [28] further scale to high-resolution generation by intro-
ducing a compressed latent space, improving computational
efficiency and memory usage.

Recently, methods which introduce alternative processes
for the corruption of the input image arised. Particularly,
Inverse Heat Dissipation (IHD) introduced by Rissanen et
al. [27] replaces the conventional Gaussian-based forward
corruption with a heat-equation blur with minor additive
noise, thereby offering a physically grounded coarse-to-fine
scheme. Follow-up work has been done by Hoogeboom
and Salimans [12], who combined blurring with a grow-
ing amount of Gaussian noise controlled by an appropriate
scheduler [5]. On the other hand, Huang et al. [14] intro-

duced a blue noise characterized by a prescribed energy
spectrum for the corruption process. Our approach gener-
alizes this PDE-driven philosophy by infusing a velocity-
driven advection term into the forward process.

In a so-called cold diffusion, Bansal et al. [2] proposed
a sampling method that is able to invert a fully determin-
istic (without noise) degradation process. They introduced
arbitrary deterministic operators (e.g. blur, masking) with-
out noise, and learned to invert them without imposing a
strict physical PDE. Daras et al. [6] presented a soft score-
matching loss function and a momentum sampler with ap-
plication to blurring with a limited amount of noise. Their
model was trained to predict a clean image that would re-
semble the one after corruption.

In terms of computational fluid dynamics, the Lattice
Boltzmann Method (LBM) have garnered growing attention
[1, 3, 20, 21] due to its highly local computations suitable
for GPU-based acceleration. Because LBM naturally solves
advection-diffusion type equations, it has been chosen for
our goal of embedding a velocity-dependent PDE in the for-
ward corruption pass. Finally, the data-driven PDE solvers
have exploited deep learning to accelerate numerical simu-
lations [18, 22, 26].

3. Background on Diffusion Models

In diffusion-based generative models (e.g., DDPM), the
pixel intensities are progressively corrupted by noise, which
can be viewed in physical terms as a random reaction pro-
cess. In contrast, recent works highlight that image inten-
sities may also be transformed via partial differential equa-
tions (PDEs) before adding only marginal noise [6, 27]. Be-
low, we first revisit the classic noise-driven diffusion formu-
lation and then generalize to the PDE-based diffusion pro-
cess.

3.1. Probabilistic Diffusion Models

Classical diffusion models [11, 33] treat the forward noising
as a Markov chain q(uy, | ug—1) that progressively corrupts
an initial data sample ug. Interpreted in continuous time,
the forward process can be seen as a stochastic differential
equation (SDE),

du(t) = f(u(t),t)dt + g(t)dw(t), ()

where w(t) is Brownian motion and g(t) regulates the noise
injection. The drift term is denoted with f (u(t),t) The dis-
tribution of u(t) then follows the Fokker—Planck equation:

Ip(u,t)
ot

= Vo (Flt)pw, 1)) + 1 V2 (6 (1) plu, 1))

2
In more intuitive terms, as ¢ increases, u(¢) becomes increas-
ingly randomized (e.g., converging to an isotropic Gaus-
sian), and a learned reverse process iteratively “denoises”
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Figure 2. Example of the corruption and generative process of our method, illustrated over 11 sequential frames in a chain. o = 20,

Pe = 0.6. Please refer to Section 4 for details.

from that noise-prior back to the data manifold. Such purely
noise-driven approaches can be viewed physically as a local
“reaction” term affecting each pixel independently. How-
ever, this local scalar reaction may overlook spatial coher-
ence.

3.2. PDE-Based Diffusion Models

According to terminology coined in [36], the evolution
of moments of the corrupted prior distribution can be de-
scribed as either being Variance Preserving, Var[p(u)] = I,
or Variance Exploding, Var[p(u;)] — oco. At the same time,
the mean of the prior distribution will be either shrinking,
E[p(ut)] — 0, or constant E[p(u:)] = E[p(ug)]. These
properties arise from the interplay between the drift term
and Gaussian noise injection in Eq. (1). When using a con-
servative PDE, like blurring, the forward corruption process
by design preserves color “intensity” . Therefore, it can be
classified as having a constant mean and exploding variance.
For example, starting from any smoothed “blue canvas,” one
can generate an image of a sky or an ocean but not an au-
tumn forest.

Apart of that, the energy spectrum of an image behaves
differently depending on the type of corruption process, as
shown in Fig. 3.
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Figure 3. Comparison of the Energy Spectrum (ES) of an image
subjected to different corruption processes. In the blurring process,
the amplitude of energy components decays in a log-linear manner
with a constant slope. The ES of a blurred image is represented by
a blue line with circular markers. It is shifted downwards com-
pared to the ES of the clean image denoted with green dotted line.
On the other hand, the ES of the image in classical DDPM can be
viewed as being gradually flooded with noise (red) starting from
the higher frequencies..

Examples of PDE corruption operators. Recently, mod-
els based on that approach have been proposed in literature:
* Heat dissipation (Isotropic Diffusion). The simplest
operator sets %—;‘ = aV?u. The Inverse Heat Dissipa-
tion (IHD) [27] utilizes this PDE, generating a ‘“coarse-
to-fine” representation that naturally preserves color bias.
To avoid the accumulation of numerical errors, a minor
Gaussian perturbation is added during both training and

sampling procedures.

* Blurring Diffusion. Here, the heat equation is recasted
as a full Markov chain in the frequency domain, by inject-
ing dimension-wise noise [12]. Although the multi-scale
blurring is emphasized, the directional flow is not present.

¢ Advection (Ours) or More Complex Dynamics. One
can further enrich the physical process with a velocity
field to transport pixel intensities spatially.
In contrast to local Gaussian noising, the PDE-based corrup-
tions rearrange intensities in a spatially coherent way. With
a purely conservative, PDE-based corruption operator, one
may still add small perturbations outside the PDE solution
at each step to keep the chain stochastic. This framework
ensures that color conservation arises from the PDE itself,
which can be beneficial for preserving global color palettes.

4. Advection-Diffusion—-Reaction Process

Our goal here is to perform the corruption process using a
physically grounded mass transport equation, such as the
advection—diffusion—reaction equation. Standard Gaussian-
based noising can be seen as a special case of this equa-
tion in which both the advective transport and the averaging
(blurring) terms are omitted. Let us discuss the advection—
diffusion—reaction equation in the general form,
ou .

— + V-(vu) = V- (aVu)+ Q1) . 3)
ot N—— ———

advection diffusion reaction

The velocity field, v = v(z,y), displaces the image inten-
sities, u = u(z,y, t). We omit the vector notation here, but
the same approach is applied for each color channel. Over
time, the diffusion term continues to reduce high-frequency
features with a time-varying coefficient « = «(t). Simulta-
neously, the reaction term, Q(t), can modify the amount of
the quantity u over time. In the context of DDPM, the reac-
tion term would correspond to the injection of the Gaussian
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Figure 4. Corruption process: (a) input image, (b) advection and
(c) blur “redistribute” the intensities but preserve the total “mass”,
i.e., pixel-intensity sum (conservative). (d) Gaussian noise adds or
subtracts “mass” (non-conservative).

noise, Q ~ N(0,0I), while the advection and diffusion
terms may be interpreted as the drift term, f(u(t),t), in
Eq.1. This kind of PDEs naturally arises in physical pro-
cesses that describe the transport of quantities such as mass
or energy and are known as conservation laws.

Fig. 4 shows that the redistribution of pixels’ intensi-
ties can be achieved solely by the reaction term (addition/-
subtraction) or via the advection-diffusion operator which
would shift the intensity (being a vector flux rather than
a scalar reaction term). Interestingly, from the point of
view of a standalone observer who sees only the effective
change in intensity, the underlying processes may be indis-
tinguishable. Our research aims to explore the advection
effect while keeping the stochastic scalar noise marginal.
Consequently, in our method we do not inject noise directly
into the PDE itself in order to keep the process conservative.
Let as define the A(t;) [u] as shorthand for the advection-
diffusion terms given in Eq. (3). This equation is solved
numerically for &k steps using a numerical LBM solver as
described in Sec. 4.2. We add a small Gaussian perturba-
tion just before passing the data to the neural network,

A(tg)[uo] + & ~N(0,07I). (4
N—

advection-diffusion Gaussian
forward chain training noise

uk(xay) =

Here, o = 0.01 is a small constant during all steps. In con-
trast to classical DDPM, the noise is not accumulated along
the corruption process. As illustrated in Fig.5, this separa-
tion keeps the corruption process physically consistent. The
primary purpose of these small Gaussian perturbations is to
alleviate the accumulation of numerical errors (c.f. Daras
et al. [6]). Readers interested in work with high noise-to-
blur ratios are referred to [12].

4.1. Turbulent Velocity Field Generator

The presented advection—diffusion process relies on a ve-
locity field v = v(x, ) to transport image intensities dur-
ing the forward process. In real-world phenomena, the
time varying, turbulent velocity fields exhibit both large and
small-scale coherent flows [38]. To capture these multi-
scale effects we propose a Spectral Turbulence Generator
that synthesizes a v with controllable spectral energy.

The turbulent velocity field can swirl, convect, or other-
wise mix image content over time, along the forward cor-
ruption trajectory. Our turbulence generator achieves this

> Corruptor » . >
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Figure 5. An overview of the NN training pipeline. The image
corruptor applies advection—diffusion operator .A(tx) during each
of the discrete time steps. The NN is trained on pairs of images
destroyed up to the prescribed time, as dictated by the scheduler.

by parameterizing v in the frequency domain and drawing
random phases to yield diverse realizations. Moreover, the
spectral parametrization allows to control energy at specific
wavenumbers, thereby tailoring how features are displaced
over different spatial scales.

Spectral Parameterization. The synthetic turbulent ve-
locity field is inspired by the Random Fourier Modes (RFM)
approach [8]. The core idea is to construct a velocity field
in the Fourier space by assigning random phases to Fourier
modes whose amplitudes are determined by a prescribed
energy spectrum. Consider the two-dimensional domain
Q) C R? with coordinates x = (x,y). We form discrete
wavevectors K = (Kkg, ky) on a grid determined by the spa-
tial resolution N x N. Let us denote the 2D velocity field
v = [vg,v,] and its Fourier transform as v(k) = F(v). In
the RFM approach, the time-varying velocity components
are generated in the spectral space as,

Ua (k) = A0+t
dy(K) = A(|lw])e o+,

where [|k|| = ,/kZ + k2 is the wavenumber magnitude.

The angular frequency w is calculated as w = ||k|| dt where
we set dt = 10~% as a small increment so that phase evo-
lution remains slow and stable in the spectral domain. The
random phases are denoted as ¢(x) and are uniformly dis-
tributed in [0, 27). The amplitude A(]|||) is determined by
the prescribed energy spectrum E(||k||) o ||| ~2.

We restrict k£ to a chosen band to shape the flows
dominant frequencies; in our experiments we choose
[Fmins Fmax] = [27/N,27/(1024N)]. By inverse Fourier
transform we obtain the spatial velocity components v(x, t)
updated across time steps ¢ = 1,...,tx. This approach
naturally handles swirling, drifting, and other turbulent-like
motions when k. iS large enough to include fine-scale
eddies. Fig. 6 depicts an example of the generated velocity
field and its corresponding spectrum.
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(a) Generated velocity field. Col-
ored by the velocity field magni-
tude (normalized).

(b) Spectrum of the turbulent ve-
locity field obeys the imposed
decay slope.
Figure 6. Generated turbulent velocity field and its corresponding
spectrum. Please refer to Section 4.1 for details.

Velocity Magnitude Limiting. Our generator can also
cap the velocity magnitude to control numerical stability
by maintaining realistic motion speeds. Specifically, after
transforming to the spatial domain we apply a soft-limiter
tanh(-)-based function to ensure that the generated field
does not exceed a maximum threshold, ||v(x,#)|| < 1073.
One can vary this threshold to tune the swirl intensity or
keep flows numerically stable.

Integration into the PDE. At forward step k the gener-
ator outputs vi(x). Substituting into (3), we solve for the
advected and diffused image field. Over multiple timesteps,
this results in a gradual flow-driven smoothing that captures
both large-scale drift and fine-grained turbulence.

4.2. Lattice Boltzmann Solver

While one can solve the heat equation in the frequency
domain, the presence of advection makes an efficient real-
space discretization necessary. We adopt the Lattice Boltz-
mann Method (LBM), which models the macroscopic field
u(x,y, t) via particle-like distribution functions at each grid
node: {u;(x,y,t)}i=0,... s inaD2Q9 arrangement, where D
is the number of dimensions and Q is the number of discrete
distributions. Conceptually, u;(z, y, t) denotes distributions
moving in one of nine discrete velocity directions, so that
u(z,y,t) = >, ui(z,y,t) recovers the physical density (or
intensity) at (x, y). It can be shown [19], that the LBM algo-
rithm naturally handles advection and diffusion, and easily
scales to large images on GPUs.

The LBM Routine. At each time step, the LBM applies

the following fundamental stages:

1. Compute equilibrium distribution: The advection is
driven by the externally generated velocity field v which
influences the equilibrium distribution:

cv  (cv)? V2

_|_ —_ —
2 4 2|0
c? 2cs 2c2

uil(x,t,v) = wiu |1+

where cg = %, is the lattice speed of sound and w; is
a directional weight. The relaxation time 7 is directly
correlated with the diffusion coefficient o = ¢2 (7 — 1).

2. Collision: The local distributions u; at each grid node
relax toward an equilibrium u;%(u, v) at a rate <,

5 1
ui(m7y7t) = Ui(xa:%t) - ;[ui(x7y7t)_u?q]'

3. Streaming: The post-collision distributions u; shift
(or““stream”) to their neighboring nodes according to the
discrete lattice directions (¢;z, Ciy). On the D2Q9 lattice,
each node has eight neighbors and the rest particle

’U,,L(CE + Cizy Y + ciy7 t + At) = ﬂl($7yat) (5)

After streaming, one sums the updated u; to recover the
macroscopic field v = ), u,;. Physical boundary condi-
tions are implemented using the bounce-back rule which
simply reverses the distributions back into the domain and
achieves the no-flux condition.

Computational Advantages. The LBM collision and
streaming are purely local memory operations, ideal for
GPU acceleration. This enables O(H W) updates on an
H x W grid with limited communication overhead. The
result is a stable, easily parallelizable solver that captures
both directional flow and diffusion in one coherent frame-
work. We implement the LBM scheme in CUDA using the
Taichi framework [ 13]. The distribution functions are stored
in a structure-of-arrays layout for memory coalescing. The
explicit LBM stencil in the pseudo-code is available in the
Appendix C of our work.

4.3. Dimensionless PDE Formulation

A key step to a fair comparison of our advection—diffusion
method to others (we compare to the IHD method [27]) is
to express the forward PDE in a dimensionless form. We
do this by introducing two dimensionless parameters: the
Fourier number (Fo) and the Peclet number (Pe) which to-
gether control how much diffusion and advection is applied.
This strips away arbitrary scale factors (like image resolu-
tion or absolute blur sizes), letting us match the essential
“diffusion budget” (Fourier number) and “flow to diffusion
ratio” (Peclet number) between methods so that any perfor-
mance differences are not merely due to mismatched scales.

Characteristic Scales. Let « be the diffusion coefficient
from Eq. (3), L a characteristic length scale (e.g., the im-
age width), and V' the maximum or typical speed for the
velocity field v. We define the dimensionless spatial/time
coordinates as

« ot

X ._ ot
L’ L2’



: _ L1y 9 _ L*> 0
withV = +V*and 5, = =55
with v*(z*,t*) = (@)  Reinterpreting the image u(z,t)
as u*(a*, t*) completes the non-dimensional setup.
Fourier Number (Fo).  When discretizing the PDE into
time increments of length At, we define
a At

12
which dictates how much diffusion occurs per time step in
dimensionless time. Equating Fo across different forward
processes ensure that the same corruption schedule and the
same physical time apply to data at different resolutions.

Peclet Number (Pe). To quantify the ratio of advective

transport to diffusion rate, we use

VL
o

We then scale the velocity

Fo = = At", (6)

Pe = N

Increasing Pe intensifies the directional flow.

0
Dimensionless PDE. Starting from 2 + a(v-Vu) =

ot
a V2u, and applying the above scalings yields

% + FoPe (V*~ V*) u* = FoV*2yu*, ®)
where the diffusion term is scaled by Fo and the advection
term by FoPe. When Pe = 0, Eq. (8) reduces to forward
blur only (no advection). In practice, we fix the Fo sched-
ule (thereby defining the diffusivity « per solver step) and
then we choose Pe to modulate how much advective flow is
added. This dimensionless framing ensures a clean compar-
ison: both processes consume the same “diffusion budget”,
but differ in how strongly they advect.

4.4. Scheduler

In the work of Rissanen et al. [27], the amount of blur has
been solely defined by a parameter ¢. From the physi-
cal standpoint, it be can connected with Fo as o = V2ta
therefore Fo = 7. To compare our results to Rissanen et
al. [27], we found the exponential schedule most suitable.
The blur schedule, expressed in dimensionless time Fo; for
t=0,1,...,7 — 1, is generated using an exponential spac-
ing. The formula reads,

where Fop,;, and Fop,., 1s the initial and final dimensionless
time. The value T is the total number of denoising steps in
the schedule and ¢ is the index of the current step, ranging
from O to T' — 1. Notice that the number of denoising steps
T does not have to coincide with the number of steps per-
formed by the numerical solver. Therefore the relaxation
coefficient in conductivity in Eq. 3 has to be calculated for
each pair of Fo; and Fo,1.

Algorithm 1 Training

Ug, Ug_1, k < drawn a training batch
er ~ N (0,0%)

Uy < ug + er

AY = Wy(Ug, k)

Lyse = [|A" + (up—1 — 0x)||3

> Training noise

Algorithm 2 Sampling
k+— K > Start from terminal state
u~ p(ug) > Sample from the blurry prior

while £ > 0 do
es ~ N (0, U%)
Uy < u; + €5
A" — ‘I’g(ﬁk, kj)
up_1 < U + A"
k+—k—-1

end while

> Sampling noise

> Reverse step

4.5. Learning the Reverse Process

Given an image, let us denote the field of its pixels in-
tensities as uyg. It evolves in discrete time steps k =
1,..., K. We define a forward chain q(ui.x | ug) by
applying our PDE-based advection-diffusion operator plus
noise. Rather than building a variational bound, the neu-
ral network Wy learns differences between chain elements
po(uk—1) — pe(ug) in a purely in a regression-style man-
ner. Specifically, we start from a corrupted prior p(ug) (e.g.
kernel density estimates of blurred and advected training im-
ages). The training and sampling noise, denoted as e7 and
e respectively, is injected between pairs (uy, ug—1) for all
k. Their ratio is fixed as o7 /og = 1.25 and acts solely as a
mild regularization.

Observe, that the MSE loss in Algorithm 1 corresponds
to a finite difference of 2% ~ “:=1-%t where dt = 1/K.
As the number of steps grows to infinity, K — oo, the loss
converges to the denoising score matching objective (which
is the gradient of the log-probability density), re-using the
derivation presented in IHD App. A4 [27].

To speed up the Algorithm 1, the u; and uy_; are ac-
tually stored in a precomputed training data tensor from
which the batch is drawn. The precomputation procedure
follows Eq. (4), w; = A(t) [uo]. The neural network is an
U-Net [29] with attention layers, please refer to the supple-
mental material for further details.

5. Experiments

We evaluate our approach on datasets commonly used in
generative modeling: FFHQ-128 (128 x 128 resolution,
70,000 training samples), MNIST (28 x 28 pixels, 60,000
training images, 10,000 testing). We present additional
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Figure 7. Samples for 0 = 16, comparing different Peclet num-
bers.

qualitative results on LSUN Church dataset in the Appendix.
To obtain the initial state (blurry prior), we corrupt the clean
images with according to the PDE, as described in Sec. 4.

Impact of Peclet Number on Generated Samples. We
first provide qualitative demonstrations of our models abil-
ity to generate high-fidelity images. In all datasets we ob-
serve that a directional flow (via Pe # 0) yields visually
richer details. Figure 7 shows side-by-side generated im-
ages on the FFHQ-128 dataset, illustrating that even mild
Peclet numbers can enhance the local structure.

To quantify the impact of our advection-diffusion model
on image quality and generative performance, we report
evaluation metrics in Tab. 1 for various Peclet numbers
(Pe), which control the strength of the advective term.
The experiments are conducted on the FFHQ dataset at
128 %128 resolution using 200 sampling steps, and repeated
under two final blur conditions, parameterized by spatial dif-
fusion scales 0=16 and 0=20. We report Fréchet Inception
Distance (FID)[9] to measure distributional alignment and
the LPIPS metric[40]to capture perceptual diversity with
respect to ground truth images. In addition, we evaluate

Table 1. Evaluation metrics for Peclet numbers on FFHQ
128%x128. Top: o=16, bottom: 0=20. Lower FID is better.
Higher pipips and PRDC values indicate greater diversity and cov-
erage. When Pe = 0, the model achieves a baseline values corre-
sponding to the purely blurring approach.

Pe FID | HLPIPS Toreies T PT Rt Dt (&)
o=16

0 (IHD) 52.10 0.238 0.011 0.789 0.118 0.763 0.507
0.02 52.33 0.255 0.013 0.788 0.112 0.770 0.506
0.04 53.54 0.260 0.014 0.797 0.119 0.803 0.499
0.06 4693 0.265 0.012}0.812 0.139 0.858 0.539
0.08 46.24 0.248 0.017 0.806 0.153 0.870 0.565
0.10 47,57 0.297 0.017 0.800 0.171 0.892 0.550
0.12 4536 0.296 0.018 0.808 0.173 0.956 0.587
0.14 38.10 0.302 0.023 0.798 | 0.223 0.958 0.627

0 (IHD) 55.87 0265 0.016 0.798 0.109 0.762 0.482
0.02 56.57 0.293 0.013 0.797 0.102 0.806 0.491
0.04 5144 0.286 0.022 0.815 0.115 0.921 0.539
0.06 36.64| 0.315 0.019 0.826 0.243 1.040 = 0.665
0.08 37.41 0305 0.019 0.817 ' 0.247 1.043 0.662
0.10 4288 0.311 0.018 0.764 0.187 0.854 0.556
0.12  48.62 0.344 0.022 0.688 0.183 0.683 0.510
0.14 54.56 1 0.348 0.019 0.632 0.150 0.565 0.429

generation fidelity and sample diversity using the Precision,
Recall, Density, and Coverage (PRDC) metrics [24]. As ex-
pected, increasing the Peclet number enhances sample diver-
sity (higher o pips and PRDC scores) but generally degrades
fidelity (higher FID), consistent across both o regimes. The
arrow annotations in the column headers indicate the pre-
ferred direction for each metric.

Hoogeboom et al. [12] noticed that better FID metric can
be achieved for higher final blur ¢ at the price of a more dif-
ficult (longer) training. Eventually, the optimal Pe depends
on the final amount of blur.

Image Interpolation. = We also evaluate our method on
interpolated initial states and compare it with a baseline ap-
proach (IHD). Two samples from FFHQ dataset undergo the
forward process, followed by linear interpolation in the la-
tent space. The interpolated states are then denoised with
generative noise and interpolated with SLERP Shoemake
[32]. The analysis provides an insight into the smoothness
and consistency of the learned latent space. By denoising
the linearly interpolated noisy inputs we assess the model’s
ability to generate coherent transitions. Figure 8 depicts the
qualitative results.

Discussion and Limitations. = An immediate drawback
of introducing a nonlinear advection term into the diffusion
process is the necessity of step-by-step computation up to



IHD
Pe=0.0

Our
Pe=0.02

Our
Pe=0.04

Our
Pe=0.06

Our
Pe=0.08
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Pe=0.10

Our
Pe=0.12

Figure 8. Visual comparison of interpolations between two FFHQ samples. Each undergoes the forward process up to o = 16, followed
by linear interpolation and denoising with SLERP-interpolated generative noise added at each step.

the given time. In practice, we solve the PDE which governs
the corruption process for the dataset and store the result to
avoid repeated runs. This procedure consumes ~ 10% of
total training time. In our examples, the corruption process
lead to the blurry prior from which new samples can be gen-
erated. As a consequence, we have not found a distribution
(like a standard Gaussian) from which samples could be eas-
ily drawn. However, a sufficiently long process with prop-
erly tuned balance between advection and diffusion terms
shall converge to a well defined stationary turbulent field
analogous to the noising Markov process.

6. Future Outlook and Conclusions.

We proposed a novel PDE-based diffusion model based on
the advection-diffusion equation. The model introduces
a turbulent mixing term to the forward diffusion process,

which, to our knowledge, has not been attempted before. In
our experiments, we showed that adding the advective term
besides the diffusion one improve the quality (FID) of gener-
ated images compared to the baseline approach (IHD) [27].
The external velocity field, which can transfer pixels’ in-
tensities in a spatially coherent way, offers a new way of
introducing corruption into the forward process. In the fu-
ture, the influence of different turbulence generators and the
slope of turbulent kinetic energy can be further investigated.
The interplay with a Gaussian noise corruption as proposed
in Hoogeboom and Salimans [12] also seems a natural di-
rection of research. Finally, it would be interesting to evalu-
ate the model using different training objective, for instance
the flow matching approach [23]. Then, the effect of the
“overall” destruction of the image (final state) could be in-
vestigated separately from the forward corruption trajectory
dictated by a particular of PDE.
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